
Graph Summarization with Bounded Error

Yue Tan

tanxiangyueer@foxmail.com
2015.5.7

Data Mining Group, Web Sciences Center Institute of Computer Science and
Technology, UESTC

Data Mining lab 2015 2tanxiangyueer@foxmail.com

Outlines
1. Introduction

• A Generic Graph Representation
• MDL Representation
• Approximate Representations

2. Computing MDL Representations
• The Greedy Algorithm
• The Randomized Algorithm

Data Mining lab 2015 3tanxiangyueer@foxmail.com

 World Wide Web.

 Social Networking.

 IP Network Monitoring.

 Market Basket Data.

1. Introduction

Large graphs with millions and even billions of nodes and edges.

Data Mining lab 2015 4tanxiangyueer@foxmail.com

1.1 A Generic Graph Representation

 A graph G = (VG, EG), and a representation for it R = (S, C) consists of a

graph summary S = (VS, ES) and a set of edge corrections C. The graph

summary is an aggregated graph structure in which each node v ∈VS ,

called a supernode, corresponds to a set Av of nodes in G, and each edge (u,

v) ∈ ES , called a superedge, represents the edges between all pair of nodes

in Au and Av .

Data Mining lab 2015 5tanxiangyueer@foxmail.com

1.1 A Generic Graph Representation
a. If two nodes have edges to the same set (or very similar set) of other

nodes, then we can collapse them into a supernode and replace the two
edges going to each common neighbor with a single superedge.

b. Further, if there is a complete bi-partite subgraph, then we can collapse
the two bi-partite cores into two supernodes and simply replace all the
edges with a superedge between the supernodes.

c. Similarly, we can collapse a complete clique to a single supernode with a
self-edge.

Data Mining lab 2015 6tanxiangyueer@foxmail.com

1.1 A Generic Graph Representation
 Keeping the set of corrections C,which contains the list of edge-corrections
that need to be applied to the graph constructed using S to recreate the original
graph G.

a. For the superedge (u, v), C contains entries of the form ′-(x, y)′ for the
edges that were not present in G.

b. If the same superedge was not added to S, C will contain entries of the
form ′+ (x, y)′ for the edges that were actually present in G.

 Defining the function g(R) that maps a
representation R to the equivalent graph
G. An edge (x, y) is present in G iff either
(a) C contains an entry ′+ (x, y)′, or (b) S
contains a superedge (u, v) s.t. x ∈ Au

and y ∈ Av and C does not have an entry
′-(x, y)′.

Data Mining lab 2015 7tanxiangyueer@foxmail.com

1.1 A Generic Graph Representation
Example.

 Note that the graph is compresse d from size (number of edges) 11 to 6 (4
edges in graph summary and 2 edge corrections). The neighborhood of a node
(say g) in the graph is reconstructed as follows.

First, find the supernode (y) that contains g,
then add edges from g to all the nodes in a
supernode that is a neighbor of y. This
gives the edges {(g, a), (g, d), (g, e), (g, f)}.
Next, apply the corrections to the edge set,
that is, delete all edges with a ′-′ entry
(edge (g, d)), and add edges with a ′+′ entry
(none in this example).This gives the set of
edges in the neighborhood of g as {(g, a),
(g, e), (g, f)}, which is the same as in the
original graph. This can be repeated for all
nodes in VG to recover the original graph.

Data Mining lab 2015 8tanxiangyueer@foxmail.com

1.2 MDL Representation
Minimum Description Length (MDL) principle

It roughly states that the best theory to infer from a set
of data is the one which minimizes the sum of (A) the
size of the theory, and (B) the size of the data when
encoded with the help of the theory.

Data Mining lab 2015 9tanxiangyueer@foxmail.com

1.2 MDL Representation
•Defining the cost of a representation R = (S, C) to be the sum of the storage
costs of its two components, that is, cost(R) =|ES | + |C|.

•Thus, if R^ =(S^,C^) denotes the minimum cost representation, then theMDL
principle says thatˆS is the “best possible” summary of the graph.

•We define Πuv as the set of all the pairs (a, b), such that a ∈ Au and b ∈ Av ;
this set represents all possible edges of G that may be present between the two
supernodes. Furthermore, let Auv ⊆ Πuv be the set of edges actually present in
the original graph G (Auv = Πuv ∩ EG).

Data Mining lab 2015 10tanxiangyueer@foxmail.com

1.2 MDL Representation
•Now, we have two ways of encoding the edges in Auv using the summary and
correction structures. The first way is to add the superedge (u, v) to S and the
edges Πuv−Auv as negative corrections to C, and the second is to simply add the
edges in the set Auv as positive corrections to C. The memory required for these
two alternatives is (1+|Πuv−Auv|) and |Auv|, respectively. We will simply choose
the one with the smaller memory requirements for encoding the edges Auv.

•The cost of representing the edge set Auv between supernodes u and v in the
representation is cuv = min{|Πuv| - |Auv| + 1, |Auv|}.

Problem Statement : Given a graph G, compute its MDL representation R^.

Data Mining lab 2015 11tanxiangyueer@foxmail.com

1.3 Approximate Representations
We now proceed to define an ε-approximate
representation, denoted by Rε, that can recreate the original
graph within a user-specified bounded error ε (0 ≤ ε≤ 1).
The structure of Rε is identical to representation R
discussed earlier; thus, it too consists of a (summary,
corrections) pair (Sε, Cε). But unlike R, it provides the
following weaker guarantee for the reconstructed graph Gε
= g(Rε): For every node v ∈ G, if Nv and N′v denote the set
of v’s neighbors in G and Gε, respectively, then

 error(v) = |N′v − Nv | + |Nv − N′v | ≤ ε|Nv | (1)
where, N′v − Nv is the set difference operation. Here, the first
term in the equation represents the nodes included in the
approximate neighbor set N′v but were not present in the
original neighbor set Nv , while the second term represents
vice-versa.

Data Mining lab 2015 12tanxiangyueer@foxmail.com

1.3 Approximate Representations

Problem Statement: Given a graph G and 0 ≤ ε ≤1,
compute the minimum cost ε-representation.

Observe that the MDL representation ˆR is essentially a
representation R0 with error parameter ε= 0 that has the
minimum cost. Thus, one approach to compute a minimum
cost Rε is to first compute ˆR, and then delete edges from ˆ
C or ˆS that do not violate Equation (1) for any node v ∈ G.
As εincreases, we can remove more edges from both the
graph summary and corrections, and reduce the cost of the
representation even further.

Data Mining lab 2015 13tanxiangyueer@foxmail.com

1.3 Approximate Representations
Example 2. Consider the graph and suppose ε= 1/3. From
the corrections C, if we remove the entry +(a, e), then the
approximate neighbor sets for a and e would be N′a = {b, c,
g, h} and N′e = {g, h}. Since the neighbor sets for a and e in
the original graph G are Na = {b, c, e, g, h} and Ne = {a, g, h},
the approximate neighbor sets N′a and N′e satisfy Equation
(1). So we can remove +(a, e) from C and reduce its size
without violating the error bounds.

Data Mining lab 2015 14tanxiangyueer@foxmail.com

2. COMPUTING MDL REPRESENTATIONS

we present two algorithms for finding the MDL representation ˆ
R. The first algorithm, called Greedy,iteratively combines node
pairs that give the maximum cost reduction into supernodes.
The second algorithm, called Randomized, is a light-weight
randomized scheme that, instead of merging the globally best
node pair, randomly picks a node and merges it with the best
node in its vicinity.

Data Mining lab 2015 15tanxiangyueer@foxmail.com

2.1 The Greedy Algorithm

To understand the intuition behind this approach, recall that in
a graph there may be many pairs of nodes that can be merged
to give a reduction in cost. Typically, any two nodes that share
common neighbors can give a cost reduction,with more
number of common neighbors usually implying a higher cost
reduction. Based on this observation, we define the cost
reduction s(u, v) (see below) for any given pair of nodes (u, v).
In Greedy, we iteratively merge the pair (u, v) in the graph with
the maximum value of s(u, v) (the best pair).

Data Mining lab 2015 16tanxiangyueer@foxmail.com

2.1 The Greedy Algorithm

For any supernode v ∈ VS , we define the neighbor set Nv to
be the set of supernodes u ∈ VS , s.t. there exists an edge (a,
b) in graph G for some node a ∈ Av and b ∈ Au. Recall that
the cost of the superedge (v, x) from supernode v to a
neighbor x ∈ Nv is cvx = min{|Πvx| − |Avx| + 1, |Avx|}.We will
define the cost cv of supernode v to be the sum of the costs of
all the superedges (v, x) to its neighbors x ∈ Nv .Now, given
pair (u, v) of supernodes in VS , the cost reduction s(u, v) is
defined as the ratio of the reduction in cost as a result of
merging u and v (into a new supernode w), and the combined
cost of u and v before the merge.

 s(u, v) = (cu + cv − cw)/(cu + cv) (2)

Data Mining lab 2015 17tanxiangyueer@foxmail.com

2.1 The Greedy Algorithm
Example 3. Figure 2 shows the steps of the Greedy algorithm
on the graph shown in Figure 1. For the sake of simplicity, we
refer to the supernode formed due to merging nodes x and y as
the concatenated string “xy”. In the first step, we merge the
pair (b, c), which has the highest cost reduction of .5 (since
both b and c have two edges incident on them, each has a cost
of 2, and supernode bc also has a cost of 2 because of a self-
edge and a superedge to a; hence the cost reduction for (b, c)
is .5). The other top contending pairs are (g, h) with an s(·)
value of 3/7 and (e, f) with s(e, f) = 2/5. To see why s(g, h) =
3/7, lets derive the costs of nodes g and h before and after they
are merged. Nodes g and h have 3 and 4 incident edges,
respectively, and so cg = 3 and ch = 4. After g and h are merged
to form supernode gh, we will have 3 superedges between
supernode gh and nodes a, e and f , and one correction +(h, d).
Thus,cgh = 4 and s(g, h) = (cg + ch − cgh)/(cg + ch) = 3/7.

Data Mining lab 2015 18tanxiangyueer@foxmail.com

2.1 The Greedy Algorithm

In the next 3 steps, we merge the pairs (g,
h) with cost reduction 3/7, (e, f) with cost
reduction 1/3 (since ce = 2,cf = 1, and cef =
2 because of a superedge between ef and
gh, and a correction +(a, e)), and (d, ef)
with cost reduction 0. Note that the last
merge does not decrease the cost, but
only reduces the number of supernodes in
the summary S resulting in a more
compact visualization. After these
merges,the cost reduction is negative for
all pairs, and so Greedy terminates.

Data Mining lab 2015 19tanxiangyueer@foxmail.com

2.2 The Randomized Algorithm
The Randomized algorithm (Algorithm 2) iteratively merges nodes to form a
set of supernodes VS ; these supernodes are divided into two categories, U
(unfinished) and F (finished). The finished category tracks the nodes which
do not give any cost reduction with any other node (that is, s(·) value is
negative for all pairs containing them), while the unfinished category
contains the remaining nodes that are considered for merging by the
Randomized algorithm.Initially, all the nodes are in U . In each step, we
choose a node u uniformly at random from U , and find the node v such that
s(u, v) is the largest among all pairs containing u. If merging these nodes
gives a positive cost reduction, we merge them into a supernode w. We
then remove u and v from VS (and U), and add w to VS (and U). However,
if s(u, v) is negative, we know that merging u with any othernode will only
increase the cost; hence, we should not consider it for merging anymore
and so we move u to F . We repeat these steps until all the nodes are in F .
Finally, the graph summary and corrections are constructed from VS ,similar
to the Greedy algorithm.

Data Mining lab 2015 20tanxiangyueer@foxmail.com

2.2 The Randomized Algorithm

Data Mining lab 2015 21tanxiangyueer@foxmail.com

Thank You!

