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 World Wide Web. 

 Social Networking. 

 IP Network Monitoring.

 Market Basket Data. 

1. Introduction 

Large graphs with millions and even billions of nodes and edges.
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1.1 A Generic Graph Representation

     A graph G = (VG, EG), and a representation for it R = (S, C) consists of a 

graph summary S = (VS, ES ) and a set of edge corrections C. The graph 

summary is an aggregated graph structure in which each node v ∈VS , 

called a supernode, corresponds to a set Av of nodes in G, and each edge (u, 

v) ∈ ES , called a superedge, represents the edges between all pair of nodes 

in Au and Av . 
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1.1 A Generic Graph Representation
a. If two nodes have edges to the same set (or very similar set) of other 

nodes, then we can collapse them into a supernode and replace the two 
edges going to each common neighbor with a single superedge.

b. Further, if there is a complete bi-partite subgraph, then we can collapse 
the two bi-partite cores into two supernodes and simply replace all the 
edges with a superedge between the supernodes.

c. Similarly, we can collapse a complete clique to a single supernode with a 
self-edge.
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1.1 A Generic Graph Representation
     Keeping the set of corrections C,which contains the list of edge-corrections 
that need to be applied to the graph constructed using S to recreate the original 
graph G. 

a. For the superedge (u, v), C contains entries of the form ′-(x, y)′ for the 
edges that were not present in G.

b. If the same superedge was not added to S, C will contain entries of the 
form ′+ (x, y)′ for the edges that were actually present in G. 

  Defining the function g(R) that maps a 
representation R to the equivalent graph 
G. An edge (x, y) is present in G iff either 
(a) C contains an entry ′+ (x, y)′, or (b) S 
contains a superedge (u, v) s.t. x ∈ Au 

and y ∈ Av and C does not have an entry 
′-(x, y)′.
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1.1 A Generic Graph Representation
Example.  

    Note that the graph is compresse d from size (number of edges) 11 to 6 (4 
edges in graph summary and 2 edge corrections). The neighborhood of a node 
(say g) in the graph is reconstructed as follows. 

First, find the supernode (y) that contains g, 
then add edges from g to all the nodes in a 
supernode that is a neighbor of y. This 
gives the edges {(g, a), (g, d), (g, e), (g, f )}. 
Next, apply the corrections to the edge set, 
that is, delete all edges with a ′-′ entry 
(edge (g, d)), and add edges with a ′+′ entry 
(none in this example).This gives the set of 
edges in the neighborhood of g as {(g, a), 
(g, e), (g, f )}, which is the same as in the 
original graph. This can be repeated for all 
nodes in VG to recover the original graph.
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1.2 MDL Representation
Minimum Description Length (MDL) principle

It roughly states that the best theory to infer from a set 
of data is the one which minimizes the sum of (A) the 
size of the theory, and (B) the size of the data when 
encoded with the help of the theory.
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1.2 MDL Representation
•Defining the cost of a representation R = (S, C) to be the sum of the storage 
costs of its two components, that is, cost(R) =|ES | + |C|.

•Thus, if R^ =(S^,C^) denotes the minimum cost representation, then theMDL 
principle says thatˆS is the “best possible” summary of the graph.

•We define Πuv as the set of all the pairs (a, b), such that a ∈ Au and b ∈ Av ; 
this set represents all possible edges of G that may be present between the two 
supernodes. Furthermore, let Auv ⊆ Πuv be the set of edges actually present in 
the original graph G (Auv = Πuv ∩ EG).
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1.2 MDL Representation
•Now, we have two ways of encoding the edges in Auv using the summary and 
correction structures. The first way is to add the superedge (u, v) to S and the 
edges Πuv−Auv as negative corrections to C, and the second is to simply add the 
edges in the set Auv as positive corrections to C. The memory required for these 
two alternatives is (1+|Πuv−Auv|) and |Auv|, respectively. We will simply choose 
the one with the smaller memory requirements for encoding the edges Auv.

•The cost of representing the edge set Auv between supernodes u and v in the 
representation is cuv = min{|Πuv| - |Auv| + 1, |Auv|}.

Problem Statement : Given a graph G, compute its MDL representation R^.
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1.3 Approximate Representations
We now proceed to define an ε-approximate 
representation, denoted by Rε, that can recreate the original 
graph within a user-specified bounded error ε (0 ≤ ε≤ 1). 
The structure of Rε is identical to representation R 
discussed earlier; thus, it too consists of a (summary, 
corrections) pair (Sε, Cε). But unlike R, it provides the 
following weaker guarantee for the reconstructed graph Gε 
= g(Rε): For every node v ∈ G, if Nv and N′v denote the set 
of v’s neighbors in G and Gε, respectively, then

    error(v) = |N′v − Nv | + |Nv − N′v | ≤ ε|Nv |   (1)
where, N′v − Nv is the set difference operation. Here, the first 
term in the equation represents the nodes included in the 
approximate neighbor set N′v but were not present in the 
original neighbor set Nv , while the second term represents 
vice-versa.
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1.3 Approximate Representations

Problem Statement: Given a graph G and 0 ≤ ε ≤1, 
compute the minimum cost ε-representation.

Observe that the MDL representation ˆR is essentially a 
representation R0 with error parameter ε= 0 that has the 
minimum cost. Thus, one approach to compute a minimum 
cost Rε is to first compute ˆR, and then delete edges from ˆ
C or ˆS that do not violate Equation (1) for any node v ∈ G. 
As εincreases, we can remove more edges from both the 
graph summary and corrections, and reduce the cost of the 
representation even further.
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1.3 Approximate Representations
Example 2. Consider the graph and suppose ε= 1/3. From 
the corrections C, if we remove the entry +(a, e), then the 
approximate neighbor sets for a and e would be N′a = {b, c, 
g, h} and N′e = {g, h}. Since the neighbor sets for a and e in 
the original graph G are Na = {b, c, e, g, h} and Ne = {a, g, h}, 
the approximate neighbor sets N′a and N′e satisfy Equation 
(1). So we can remove +(a, e) from C and reduce its size 
without violating the error bounds.
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2. COMPUTING MDL REPRESENTATIONS

we present two algorithms for finding the MDL representation ˆ
R. The first algorithm, called Greedy,iteratively combines node 
pairs that give the maximum cost reduction into supernodes. 
The second algorithm, called Randomized, is a light-weight 
randomized scheme that, instead of merging the globally best 
node pair, randomly picks a node and merges it with the best 
node in its vicinity.
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2.1 The Greedy Algorithm

To understand the intuition behind this approach, recall that in 
a graph there may be many pairs of nodes that can be merged 
to give a reduction in cost. Typically, any two nodes that share 
common neighbors can give a cost reduction,with more 
number of common neighbors usually implying a higher cost 
reduction. Based on this observation, we define the cost 
reduction s(u, v) (see below) for any given pair of nodes (u, v). 
In Greedy, we iteratively merge the pair (u, v) in the graph with 
the maximum value of s(u, v) (the best pair).



Data Mining lab 2015            16tanxiangyueer@foxmail.com

2.1 The Greedy Algorithm

For any supernode v ∈ VS , we define the neighbor set Nv to 
be the set of supernodes u ∈ VS , s.t. there exists an edge (a, 
b) in graph G for some node a ∈ Av and b ∈ Au. Recall that 
the cost of the superedge (v, x) from supernode v to a 
neighbor x ∈ Nv is cvx = min{|Πvx| − |Avx| + 1, |Avx|}.We will 
define the cost cv of supernode v to be the sum of the costs of 
all the superedges (v, x) to its neighbors x ∈ Nv .Now, given 
pair (u, v) of supernodes in VS , the cost reduction s(u, v) is 
defined as the ratio of the reduction in cost as a result of 
merging u and v (into a new supernode w), and the combined 
cost of u and v before the merge.

              s(u, v) = (cu + cv − cw)/(cu + cv )    (2)
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2.1 The Greedy Algorithm
Example 3. Figure 2 shows the steps of the Greedy algorithm 
on the graph shown in Figure 1. For the sake of simplicity, we 
refer to the supernode formed due to merging nodes x and y as 
the concatenated string “xy”. In the first step, we merge the 
pair (b, c), which has the highest cost reduction of .5 (since 
both b and c have two edges incident on them, each has a cost 
of 2, and supernode bc also has a cost of 2 because of a self-
edge and a superedge to a; hence the cost reduction for (b, c) 
is .5). The other top contending pairs are (g, h) with an s(·) 
value of 3/7 and (e, f ) with s(e, f ) = 2/5. To see why s(g, h) = 
3/7, lets derive the costs of nodes g and h before and after they 
are merged. Nodes g and h have 3 and 4 incident edges, 
respectively, and so cg = 3 and ch = 4. After g and h are merged 
to form supernode gh, we will have 3 superedges between 
supernode gh and nodes a, e and f , and one correction +(h, d). 
Thus,cgh = 4 and s(g, h) = (cg + ch − cgh)/(cg + ch) = 3/7.
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2.1 The Greedy Algorithm

In the next 3 steps, we merge the pairs (g, 
h) with cost reduction 3/7, (e, f ) with cost 
reduction 1/3 (since ce = 2,cf = 1, and cef = 
2 because of a superedge between ef and 
gh, and a correction +(a, e)), and (d, ef ) 
with cost reduction 0. Note that the last 
merge does not decrease the cost, but 
only reduces the number of supernodes in 
the summary S resulting in a more 
compact visualization. After these 
merges,the cost reduction is negative for 
all pairs, and so Greedy terminates.



Data Mining lab 2015            19tanxiangyueer@foxmail.com

2.2 The Randomized Algorithm
The Randomized algorithm (Algorithm 2) iteratively merges nodes to form a 
set of supernodes VS ; these supernodes are divided into two categories, U 
(unfinished) and F (finished). The finished category tracks the nodes which 
do not give any cost reduction with any other node (that is, s(·) value is 
negative for all pairs containing them), while the unfinished category 
contains the remaining nodes that are considered for merging by the 
Randomized algorithm.Initially, all the nodes are in U . In each step, we 
choose a node u uniformly at random from U , and find the node v such that 
s(u, v) is the largest among all pairs containing u. If merging these nodes 
gives a positive cost reduction, we merge them into a supernode w. We 
then remove u and v from VS (and U ), and add w to VS (and U ). However, 
if s(u, v) is negative, we know that merging u with any othernode will only 
increase the cost; hence, we should not consider it for merging anymore 
and so we move u to F . We repeat these steps until all the nodes are in F . 
Finally, the graph summary and corrections are constructed from VS ,similar 
to the Greedy algorithm.
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2.2 The Randomized Algorithm
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Thank You!


